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Abstract: Molecular mechanics models have been applied extensively to study the dynamics of proteins and nucleic
acids. Here we report the development of a third-generation point-charge all-atom force field for proteins. Following the
earlier approach of Cornell et al., the charge set was obtained by fitting to the electrostatic potentials of dipeptides
calculated using B3LYP/cc-pVTZ//HF/6-31G** quantum mechanical methods. The main-chain torsion parameters were
obtained by fitting to the energy profiles of Ace-Ala-Nme and Ace-Gly-Nme di-peptides calculated using MP2/cc-
pVTZ//HF/6-31G** quantum mechanical methods. All other parameters were taken from the existing AMBER data
base. The major departure from previous force fields is that all quantum mechanical calculations were done in the
condensed phase with continuum solvent models and an effective dielectric constant of � � 4. We anticipate that this
force field parameter set will address certain critical short comings of previous force fields in condensed-phase
simulations of proteins. Initial tests on peptides demonstrated a high-degree of similarity between the calculated and the
statistically measured Ramanchandran maps for both Ace-Gly-Nme and Ace-Ala-Nme di-peptides. Some highlights of
our results include (1) well-preserved balance between the extended and helical region distributions, and (2) favorable
type-II poly-proline helical region in agreement with recent experiments. Backward compatibility between the new and
Cornell et al. charge sets, as judged by overall agreement between dipole moments, allows a smooth transition to the
new force field in the area of ligand-binding calculations. Test simulations on a large set of proteins are also discussed.
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Introduction

Advancements in the field of molecular mechanics simulations
have concentrated in the areas of simulation methodologies in
the past. Some highlights of these include accurate treatment of
electrostatics,1 efficient conformational sampling methods,2,3

methods for massively parallel simulations,4,5 and continuum
solvent models.6,7 These developments have enabled long-time
simulations close to the folding time of small proteins,4 and
several successful folding simulations of miniproteins have
been reported recently.8 –11 Thus, the conformational sampling
ability of all-atom models has reached an important threshold at
which simulations of many biologically relevant processes are
increasingly routine; however, the development of force fields
has lagged behind. With the growing interest in ever more
realistic simulations, the need for a reasonably accurate and

efficient force field that can represent macromolecules in the
condensed phase is becoming more critical.

In molecular mechanics-based molecular dynamics simula-
tions, the molecular systems are represented by molecular mechan-

Correspondence to: Y. Duan; e-mail: yduan@udel.edu
†Deceased

Contract/grant sponsor: NIH Research Source; contract/grant number:
CRR-15588

Contract/grant sponsor: National Institute of General Medical Sciences;
contract/grant numbers: GM-64458 and GM-67168 (to Y.D.), and GM-
29072 (to P.A.K.)

Contract/grant sponsor: The State of Delaware and University of
Delaware Research Fund (to Y.D.)

© 2003 Wiley Periodicals, Inc.



ics models in which the parameters are developed based on fun-
damental physical principles. The accuracy of a simulation is
largely determined by two factors: conformation sampling, and
model accuracy. In the past, the conformational sampling ability of
molecular dynamics simulation was viewed as the primary bottle-
neck.12,13 With the advancements in simulation methodolo-
gies14,15 and the increase in computer speed, this limitation is
gradually diminishing. Increasingly, accuracy of the underlying
models becomes the dominant factor in the outcome of a simula-
tion. For example, with current simulation methodologies and fast
computers one can readily reach the folding time scales of small
peptides using continuum solvent models,16 and in some cases,
using all-atom solvent models4; however, whether the simulations
can accurately reflect physical reality now depend on the force
field parameters used to represent the physical interactions.

An important characteristic of the current molecular mechanics
models is that their parameters are obtained through high-level
quantum mechanical calculations on short peptide fragments. Such
an approach has several advantages. It assures generality and
allows further refinement upon the availability of more accurate
quantum mechanical methods. Because the parameters are integral
components of a molecular mechanics model that describes the
interacting molecular forces, they are often referred to as the “force
field” parameters. Among the early all-atom force field developers,
Weiner et al. successfully adopted this approach17 and developed
one of the first-generation molecular mechanics force fields based
primarily on quantum mechanical data. Due to the inadequate
computing power of the time, much of the applications of this
force field were limited to in vaccuo simulations.18 A decade later,
after considerable accumulation of simulation data, Cornell et al.19

developed one of the second-generation force fields based on
improved quantum mechanical calculations. Since then, the Cor-
nell et al. force field has enjoyed a wide range of applications in
simulating both nucleic acids and proteins. One remarkable early
success of Cornell et al. force field was that it demonstrated the
ability to move incorrect conformations to the correct ones when
combined with accurate calculation of electrostatic forces.20,21

Despite their successes, the existing “second-generation” force
fields are still based on gas-phase quantum mechanical calcula-
tions, simulations of small molecules, and typically nanosecond
time-scale simulations of proteins. Recent developments in force
fields include the fully polarizable force fields from Kollman
group22 and from Friesner group.23 These force fields can poten-
tially provide accurate representations in both the gas phase and
the condensed phase, and is suited for simulations in a variety of
solvent environments (e.g., membrane proteins). On the other
hand, these force fields all tend to sacrifice computational effi-
ciency for accuracy. This factor alone may discourage their wide-
spread use. An even serious drawback for the inclusion of polar-
izability is the reduced integration stability. Although the
computational overhead can be minimized to 30–50%, our tests
show that a 0.5-fs integration time step is required to obtain a
stable trajectory (Duan, unpublished results). In comparison, a
fourfold larger 2.0-fs time step is typically used in conventional
all-atom simulations. A sixfold reduction in overall efficiency is
expected when the computational overhead is taken into account.
Furthermore, because of the multibody interactions in the polariz-

able force field, its application to Monte Carlo simulations is far
from being straightforward.

In contrast to the polarizable formulation, the traditional all-
atom representation of force fields strikes a balance between
performance and accuracy. However, until recently, all-atom force
fields have been developed based on gas-phase quantum mechan-
ical calculations of small peptides. One major deficiency in this
approach is that such a force field lacks proper representation of
the polarization effect in condensed phase. For example, the dipole
moment of alanine-dipeptide in extended conformation is 1.51
Debye in the gas phase and 1.74 Debye in organic solvent (� � 4),
differing by more than 15%. Consequently, force fields developed
based on gas-phase quantum mechanical calculations underesti-
mate the electrostatic interactions when applied to the study of
proteins. In reality, they are more suited for small peptides in the
gas phase rather than proteins in the condensed phase. In the rest
of this article, we will describe our new atom-centered point
charge all-atom force field that was design to address this defi-
ciency.

Methods

In keeping with our previous minimalist approach, this model is an
effective two-body additive model. The potential function describ-
ing interactions among particles comprises electrostatic, van der
Waals, bond, bond angle, and dihedral terms [eq. (1)]
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where, Kb and K� are the force constants for the bond and bond
angles, respectively; b and � are bond length and bond angle; beq

and �eq are the equilibrium bond length and bond angle; � is the
dihedral angle and Vn is the corresponding force constant; the
phase angle � takes values of either 0° or 180°. The nonbonded
part of the potential is represented by van der Waals ( Aij) and
London dispersion terms (Bij) and interactions between partial
atomic charges (qi and qj). � is the dielectric constant that takes
into account of the effect of the medium that is not explicitly
represented and usually equals to 1.0 in a typical solvated envi-
ronment where solvent is represented explicitly. The nonbonded
terms are calculated for all atom pairs that are either separated by
more than three bonds or are not bonded. Interactions between
atoms separated by three bonds account for the one to four inter-
actions in which the electrostatic and van der Waals parts are
reduced by 20–50%, depending on the specific implementation of
the force field. In this version, the one to four electrostatic inter-
actions are divided by a factor of 1.20 and the Lennard–Jones
terms are divided by 2.0. Both scaling factors are identical to the
Cornell et al. force field for consistency.

At the present stage of development, we have chosen to re-
derive the charges and refit the main-chain torsion parameters only
because we believe that these two factors contribute most signif-
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icantly to the accuracy of the model. The main-chain torsion
parameters are especially crucial in maintaining a reasonable bal-
ance between the important secondary conformations because er-
rors could be cumulative in protein models. Other parameters,
including bond, bond angle, side-chain torsion, and van der Waals
parameters are retained from the existing AMBER force field
parameter set.19,24

Charge Derivation

In the Cornell et al. force field, the effective charges were obtained
by fitting the gas-phase electrostatic potential of small peptides
calculated by HF/6-31G* using RESP.25 Because the charges
derived using such an approach systematically overestimate dipole
moments, much like the charges in the point-charge water models,
they implicitly include the solvent polarization effect to some
extent. The polarization effect is important in the condensed phase
where the local electrostatic environment is significantly different
than that in the gas phase due to the presence of neighboring
atoms. In the present approach, the electrostatic potential is cal-
culated in the condensed phase with continuum solvent model and
the effective point-charges are obtained by RESP fitting. Further-
more, the advancement in computational methodology allows us to
calculate the electrostatic potentials more accurately using the
DFT method with large basis set.

The new charges were obtained by fitting to the quantum
mechanically derived electrostatic potentials using B3LYP/cc-
pVTZ//HF/6-31G** methods. In these calculations, each amino
acid was represented by a dipeptide fragment consisting of the
amino acid residue and the terminal groups (Ace- and -Nme). The
electrostatic potentials of each peptide were calculated for two
conformations with main-chain dihedral angles constrained to (�,
�) � (	60, 	40) and (�, �) � (	120, 140), respectively,
representing the �-helical and the extended conformations. The
initial conformations were generated using AMBER simulation
package with a simulated-annealing protocol. These dipeptide
conformers were then subjected to energy minimization using the
AMBER Cornell et al. force field. Further geometry optimizations
were done at the RHF/6-31G** level of QM theory. All QM
calculations were done using the Gaussian 98 simulation pack-
age.26 Single-point calculations were done using the density func-
tional theory (DFT) method and the B3LYP exchange and corre-
lation functionals27–29 with the ccpVTZ30 basis set. The IEFPCM
continuum solvent model31,32 was applied to mimic an organic
solvent environment (� � 4). The electrostatic potentials of the
solutes (peptides) were saved and were used in the charge fitting.

Effective charges were obtained by fitting the electrostatic
potential of peptides using RESP method.25 A two-stage fitting
procedure was used. In the first stage of fitting, the two conformers
of each dipeptide were combined. In the second stage, the chem-
ically equivalent atoms were set to have the same charges, while
the charges of the terminal blocking groups and those of heavy
atoms were fixed. Because the charge-matching process may in-
troduce small errors, we purposely limited the errors to the
matched atoms by fixing the charges of the blocking groups and
heavy atoms. Finally, the charges of the blocking groups were fit
by combining electrostatic potentials of all amino acids.

In the Cornell et al. charge set,19 the main-chain charges were
determined by a combined RESP fit of different dipeptides such
that the charged amino acids have the same main-chain charges
while the others share another set of main-chain charges. In this
work, we chose to let each amino acid have its own main-chain
charges. Intuitively, this should allow sequence-dependent features
to be incorporated into the main-chain charge set.

Main-Chain Torsion Parameters

The main-chain torsion parameters, C–N–C�–C, N–C�–C–N,
C–N–C�–C	, and N–C–C�–C	, were obtained by fitting to a 2D
(�–�) 144-point energy profile of alanine-dipeptide calculated
using the MP2/cc-pVTZ QM method and the IEFPCM continuum
solvent model33 with a dielectric constant of � � 4 after restrained
geometry optimization with RHF/6-31G**. These 144 points are
on a 2D grid of the �–� torsion angles with a grid size of 30° (or
12 points) in each direction. This allowed us to fit the third Fourier
term of the main-chain torsion parameters, including all four
torsion angles listed above (or a total of 12 parameters). Boltz-
mann’s weighting factors, w � exp(	0.2E), were used to ensure
that the high degree of difference is mainly localized in the
energetically unfavorable regions (E is the QM energy in kcal/
mol). Overall a weighted [by exp(	0.2E)] RMS difference of 1.7
kcal/mol was obtained.

The torsion parameters, C–N–C�–H� and N–C–C�–H� of Gly-
cine, were obtained by fitting to a 36-point energy profile that is
equally distributed on the 2D �–� grid. Each of these torsion
parameters were calculated up to the second Fourier term. This
fitting procedure differed significantly from our earlier approach
where the main-chain torsion parameters were obtained by fitting
to a few key conformers of blocked Alanine dipeptide. Despite the
excellent fitting results in our earlier attempts, both versions19,34 of
the force field were found to be biased toward either �-helical
conformation (in the earlier version) or 	-extended conformation
(in the later version).

It is important to note that the purpose of the fitting is to ensure
that the energetic surface of Ace-Ala-Nme is adequately repre-
sented. However, comparisons between the quantum and molecu-
lar mechanical data of this particular peptide have been a common
practice in the field to judge the accuracy of the force field. Thus,
the accuracy of Ace- and -Nme charges used in the fitting of
torsion parameters becomes an important issue. This, of course,
does not reflect their significance in protein modeling where, in
fact, they are rarely used. Here we choose to use the charges of
Ace- and -Nme of the Ala dipeptide to reduce the likelihood of
over compensation. We also choose not to match the charges of
those chemically equivalent atoms of the Ace- and -Nme groups to
maximize the accuracy of these charges, and hence, the underlying
electrostatic potential they represent. The final reported charges of
the same groups were obtained by a combined fit of all dipeptides.
The fitted torsion parameters are given in Table 1.

Molecular Dynamics Simulations

Molecular dynamics simulations were conducted on a number of
peptides including Ace-Gly-Nme, Ace-Ala-Nme, and Ace-Ala4-
Nme (Ala4) in explicit solvent represented by the TIP3P model.35
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These simulations were performed to examine the accuracy of the
parameters and the balance between the important conformations
of peptides in aqueous solution. The Ala4 peptide is one of the
smallest peptides that can potentially form two main-chain hydro-
gen bonds. In these simulations, the peptides were initially in the
extended conformations. A 100-ps simulation was conducted at
800 K using Generalized Born continuum solvent model7 to ran-
domize the initial conformation. Solvent molecules were then
added around the peptides in truncated octahedral periodic boxes.
The minimum distances from the peptide atoms to the surfaces of
the boxes were set to 10 Å, with a total of approximately 4510
atoms (or 1500 water molecules). The simulations were started by
short (500 steps) energy minimizations and the initial velocities
were assigned randomly with a Gaussian distribution at T � 100
K. The temperatures were raised to 300 K over 10 ps, and were
maintained at 300 K using a Berendsen thermostat.36 The simula-
tions continued for more than 8.0 ns. The subsequent analysis was
based on the later part of the simulation after excluding the initial
100-ps equilibration phase. Particle Mesh Ewald1 was used to treat
the long-range electrostatic interactions and the Lennard–Jones
interactions were truncated at 8.0 Å. A time step of 2.0 fs was used
in the simulations. Pressure was maintained at 1.0 pa using Be-
rendsen algorithm, and the periodic boundary condition was im-
posed by both minimum image and the Particle Mesh Ewald.

Ramanchandran Contour Maps of Peptides

The potential of mean force (PMF) contour maps of the main-
chain �–� distribution were constructed from high-resolution
X-ray crystallography structures. The nonhomologous chains were
selected by PISCES.37 The selection criteria included lower than
40% sequence homology, 2.5 Å or better resolution, and smaller
than 0.25 R-factors. A total of 2150 chains and 432,576 residues
were selected with these criteria. Histograms were made by sta-
tistical sampling of the main-chain � and � torsion angles of the
residues on a 12 
 12 grid (30° intervals in each direction). The
histograms were converted to PMF maps at 300 K by the formula
G � 	0.597 ln(n) (kcal/mol), where n is the occurrence at the
grid point. The maps were shifted such that the lowest free energy

is zero. Contours were made at 1.0 kcal/mol intervals after second-
order spline interpolation.

Results

Extensive tests were conducted to assess the accuracy of the new
force field. In particular, its ability to represent both extended and
helical regions in a balanced manner were closely scrutinized
based on comparisons with both quantum mechanical data and the
PMF obtained from high resolution X-ray protein structures. In
keeping with traditions of the force field development community,
the outline of our results presentation will be as follows: We will
first present the comparisons with quantum mechanical data on
both Ace-Ala-Nme and Ace-(Ala)4-Nme peptides. We then
present comparisons with the Cornell et al. charge set and other
charges calculated using a variety of quantum mechanical theories
to assess the quality of the new charges and dipole moments
followed by simulation results on three peptides their comparisons
to PMF. Finally, we will conclude with our initial test results on
other small peptides and on a large ensemble of decoy set.

Comparison with Quantum Mechanical Data

Almost all contemporary force field parameters have been devel-
oped based on comparison with relatively high-level quantum
mechanical data. This is a generally accepted practice, particularly
because quantitative experimental data on short peptides is still
difficult to obtain. For example, Friesner and coworkers have
recently refined the OPLS-AA force field based on the LMP2/cc-
pVTZ(-f) data.38 Here we have also followed the conventional
practice by comparing our results against the quantum mechanical
data.

Figure 1 shows the QM and MM energies (in kcal/mol) of
Ace-Ala-Nme. The QM energies were calculated using MP2/cc-
pVTZ//HF/6-31G** method in � � 4.0 medium. The MM energies
were calculated in the “gas phase” after constrained energy min-
imization with the main-chain torsion angles fixed at the desig-
nated values. Because our charges were derived from QM data in
� � 4.0 medium, our “gas phase” charges effectively mimic such
environment and is consistent with the QM energies under com-
parison. Overall, the (unweighted) root-mean-square difference
between the QM and MM energies is 1.9 kcal/mol, and the average
absolute difference is 1.4 kcal/mol. The energy RMSD in the
regions of the Ramanchandran plot relevant to the typical protein
conformations is 0.565 kcal/mol, and the average absolute differ-
ence is 0.48 kcal/mol. These regions are defined by the 5.0 kcal/
mol contour line of the MP2 energy map (shown in Fig. 1). This
is comparable to the level of accuracy obtainable from the quan-
tum mechanical method (MP2/cc-pVTZ//HF/6-31G**)39 and is
considered acceptable. Notable differences include the slight shift
of the minimum around the �-helical region and the somewhat
expanded and slightly more favorable contour lines in the same
area, suggesting that the new force field has a tendency to over-
represent the helical region, which is contradictory to simulation
results in water (discussed later).

Another difference is seen on the � � 0 side of the �–� map
around the �L region where the new force field appears to over-

Table 1. Main-Chain Torsion Parameters.


1 �1 
2 �2 
3 �3

N–C�–C–N 0.6839 180 1.4537 180 0.4615 180
C–N–C�–C 1.0159 0 0.3451 180 0.2259 0
N–C–C�–C	 0.7784 180 0.0657 180 0.0560 0
C–N–C�–C	 0.3537 180 0.8836 180 0.2270 180
aC–N–C�–H� 0.4575 0 1.2558 180
aN–C–C�–H� 0.5607 180 0.0110 0

The symbols follow those in Eq. (1). Only those torsion parameters that are
different from earlier version of AMBER force field24 are given. Up to
three Fourier terms are used for main-chain torsions, whereas only two
Fourier terms are used for C–N–C�–H and N–C–C�–H of Glycine.
aC–N–C�–H and N–C–C�–H are for Gly only. 
1,2,3 are in kcal/mol and
�1,2,3 are in degrees.
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represent the region by about 2.0 kcal/mol. However, our simula-
tion on Ace-Ala-Nme peptide, the same peptide from which QM
data was obtained, clearly showed that the �L region was not
sampled at all during the simulation of the peptide in solution
(discussed in detail later). In our opinion, merely fitting to QM data
cannot guarantee an accurate force field. Indeed, it probably makes
sense to fit to gas-phase QM data if the molecular mechanical force
field is polarizable. On the other hand, for point-charge models,
fitting to the gas-phase QM data would make the model more gas
phase like. This is quite undesirable because of the differences in
the electrostatic potentials in the gas phase and in the condensed
phase. A more serious problem is that if the charge set is con-
densed phase like, such as the Cornell et al. charge set, and this
charge set, fitting the main-chain torsion parameters to the gas-
phase QM data, would result in over compensation, which in turn,
produces a set of parameters with a potential bias towards a
particular conformation (either �- of 	-) when used in condense-
phase protein simulations. Because of the uncertain and varying
dielectric environment, QM data, although quantitative, should
serve as merely a guide, and the accuracy of the force field should
be better judged by simulations of small peptides, even though the
latter is often qualitative. Motivated by this observation, we de-
voted significant efforts to extended simulations on small peptides.
The results of these simulations are discussed later.

Beachy et al.39 compared the QM energies of 10 Ace-(Ala)3-
Nme tetra-peptide conformers, calculated with LMP2/cc-pVTZ-
(-f)//HF/6-31G** QM methods, to the MM energies calculated by
various force fields. Our comparisons to the same set of energies
are summarized in Table 2. Because tetra-peptide is the smallest
peptide that can form one main-chain hydrogen bond in �-helical
conformation, we have also included the �-helical conformer
(courtesy of Friesner) in our comparison. This test served as the
critical set for evaluating the energetic balance between �- and
	-conformations. Our result gave an estimate for the molecular
mechanical energy difference between �- and 	-conformations,
which is 4.8 kcal/mol (Table 2), and is in reasonable agreement

with the quantum-mechanically calculated energy difference be-
tween �- and 	-conformations (5.7 kcal/mol).

Among the 11 conformers studied by Beachy et al.,39 conform-
ers 7 and 9 exhibited the largest differences relative to conformer
1 (1.9 and 2.6 kcal/mol, respectively). Conformer 9 is a left-
handed helix, which occurs only infrequently in proteins. These
results suggest that the MM energy surface overrepresented the
left-handed helical conformations by more than 0.8 kcal/mol per
residue, consistent with our earlier assessment based on the 2D
�–� energy maps. The readers should be aware that these results
are in contradiction to the simulation results of both Ace-Ala-Nme
and Ace-(Ala)4-Nme peptides in solvent (discussed later). In either
case, this disagreement with the QM energy is not a major concern
because of the low frequency of occurrences in protein structures.
When conformers containing � � 0 (conformers 3, 6, 7, 8, 9, and
10) were excluded, the root-mean-square difference was 0.46
kcal/mol. Geometrically, all � and � torsion angles were within
10° from the QM-optimized geometry after unrestrained energy
minimization with the MM force field, except the �-helical con-
former, which was restrained to the QM geometry (data not
shown).

It should be noted that the QM energies of the tetra-Ala were
obtained in the gas phase. Therefore, caution must be taken when
they are compared to MM energies of point-charge models. Be-
cause gas-phase energies can described only the behavior of small
peptides in the gas phase (despite their perceived accuracy), it
would be misleading to use them to compare against force field
parameters that are designed to mimic proteins in solution. It is
interesting that the difference between these two environments has
been neglected even in some of the recent studies. Our own studies
clearly indicated significant changes on the energetic surfaces of
small peptides at different dielectric environments. In particular,
the extended conformation, which corresponds to the 	-sheet
secondary structure, is considerably more favorable in the con-
densed phase due to solvent polarization (data not shown). Such a
change should have profound effect on the balance between helical

Table 2. Comparison between the QM and MM Energies of the tetra-Ala Peptide.

Conformer QM MM �1 �1 �2 �2 �3 �3

1 0.00 0.49 	146 157 	145 160 	145 156
2 0.13 0.71 	159 164 	155 158 	86 79

� � 0 4 1.42 1.29 	156 162 	89 84 	157 153
5 1.17 0.61 	157 170 	78 	18 	155 161
�R 5.69 5.31 	52 	53 	52 	53 	52 	53
RMSD 0.46
3 	2.71 	3.03 	82 92 76 	53 	81 85
6 	0.51 	0.12 	89 67 64 24 	166 151

� � 0 7 3.06 1.51 56 	159 	93 64 	163 	50
8 1.45 2.88 73 	71 	58 135 62 26
9 4.21 1.90 76 	58 76 	56 76 	55
10 4.28 5.50 62 30 65 21 74 	52

Energies are in kcal/mol. Main-chain torsion angles are also given in the table for reference. Corresponding main-chain
torsion angles after energy minimization using the new force field are within 10° except the �R conformation in which
the torsion angles were restrained to the QM geometry. The QM data has been provided by Friesner.39 Energies are in
kcal/mol, and angles are in degrees.
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Figure 1. Comparison between the QM and MM energy maps. En-
ergies were calculated on a 12 
 12 grid. A second-order spline
interpolation was applied to obtain smooth contours. Contour lines are
drawn at 1.0-kcal intervals, starting from 1.0 kcal. Solid contour lines
represent the MM energy map and dashed lines are for QM. QM
energies are calculated using MP2/cc-pVTZ//HF/6-31G** in � � 4.0
medium.

Figure 2. Comparison between the new charge set and the Cornell et
al. charge set. The trendline has a slope of 1.048.

Figure 3. Calculated dipoles are compared for the standard amino
acids (constructed as Ace-X-Nme) with identical sets of structures.
The DFT calculations were done using B3LYP with cc-pVTZ basis set
in the specified media. Comparisons to the dipoles moments calculated
using HF/6-31G* and Cornell et al. charge set are also presented. The
slopes of the trendlines are given in Table 5.

Figure 4. Ramanchandran plot of Ace-Ala-Nme di-peptide from simu-
lation in TIP3P water and is compared to the PMF contours obtained from
statistical analysis of high-resolution X-ray structures. Please see refs. 44
and 45 for comparison with other force fields. The red contours are the
PMF of Ala and the green contours are for all residues except Gly and Pro.
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Table 3. Atomic Partial Charges (in e.u.) of Standard Amino Acids.

Gly Ala Ser Cys Val Thr Pro Ile Leu Met Asp Asn Glu Gln His Lys Arg Trp Phe Tyr

N 	0.374 	0.405 	0.541 	0.396 	0.450 	0.245 	0.088 	0.451 	0.355 	0.395 	0.558 	0.430 	0.423 	0.387 	0.528 	0.436 	0.301 	0.428 	0.371 	0.488
H 0.254 0.294 0.345 0.295 0.440 0.255 0.329 0.262 0.281 0.320 0.255 0.307 0.301 0.282 0.251 0.234 0.242 0.234 0.264
C 0.581 0.570 0.483 0.643 0.447 0.560 0.334 0.569 0.573 0.600 0.443 0.617 0.470 0.419 0.662 0.725 0.730 0.584 0.548 0.622
O 	0.509 	0.555 	0.581 	0.585 	0.405 	0.552 	0.435 	0.620 	0.558 	0.566 	0.501 	0.524 	0.593 	0.565 	0.529 	0.563 	0.578 	0.495 	0.507 	0.527
C� 	0.129 	0.028 0.118 	0.074 	0.052 	0.271 	0.035 	0.102 	0.101 	0.088 0.007 0.045 0.032 0.037 0.031 	0.039 	0.131 	0.020 	0.030 0.010
aH� 0.089 0.121 0.142 0.141 	0.026 0.164 0.060 0.174 0.137 0.123 0.082 0.060 0.065 0.152 0.085 0.129 0.053 0.107 0.102 0.096
C	 	0.230 0.147 	0.221 0.395 0.238 	0.003 0.062 	0.144 0.019 	0.048 	0.094 0.075 	0.032 	0.152 	0.108 0.037 	0.098 	0.099 	0.052
bH	 0.077 0.040 0.147 	0.116 0.045 0.019 0.062 0.053 0.049 	0.015 0.043 	0.004 0.031 0.055 0.045 0.028 0.065 0.061 0.019
cC�, O�, S� 	0.640 	0.285 	0.090 	0.602 0.013 0.022 0.192 	0.208 0.745 0.584 	0.034 	0.020 0.278 0.033 0.012 	0.100 0.021 0.113
dH� 0.446 0.189 	0.009 0.405 0.020 0.012 0.001 0.124 	0.004 0.031 0.010 0.003
C�2 	0.176 	0.130
H�2(1,2,3) 0.060 0.030
eC�, O�, N� 	0.012 	0.101 	0.123 	0.212 	0.730 	0.527 0.765 0.668 	0.423 	0.048 0.126 	0.174 	0.083 	0.183
fH� 0.044 0.024 0.022 0.071 0.068 0.171 0.098 0.133
gC�2, N�2 	0.782 	0.298 0.090
hH�2 0.355 0.160
iC�, O�, N� 	0.285 	0.824 	0.628 0.026 	0.070 0.465 	0.298 	0.157 	0.182
jH� 0.128 0.127 0.120 0.326 0.322 0.124 0.137
kC�2, N�2 	0.883 	0.098 0.142
lH�2 0.408 0.267
C�3 	0.154
H�3 0.123
mC� 	0.250 0.566 	0.211 	0.100 0.206
nH� 0.295 0.126 0.115
oC�3, OH, NH(1,2) 	0.686 	0.164 	0.421
pH�3, HH 0.391 0.119 0.330
CH2 	0.133
HH2 0.119

aH�(2,3) for Gly.
bH	(1,2,3) for Ala and H	 for Thr, Ile, and Val, H	(2,3) for all others.
cC� for Glu, Asp, Lys, Pro, Met, Asn, and Gln; C�(1,2) for Val; O� for Ser; O�1 for Thr; S� for Cys.
dH�1 for Thr, H�(2,3) for Gln, Arg, H�1(2,3) for Ile, H�(1,2)(1,2,3) for Val.
eC�1 for Ile; Trp; C�(1,2) for Leu, Phe, Tyr; S� for Met; O�1 for Asn; O�(1,2) for Asp; C� for Pro, Glu, Gln, Lys, Arg; N�1 for His.
fH�1(1,2,3) for Ile, H�(2,3) for Arg, Lys, Pro; H�1 for Trp; H�(1,2) for Phe, Tyr; H�(1,2)(1,2,3) for Leu.
gC�2 for His, Trp; N�2 for Asn.
hH�2(1,2) for Asn.
iC� for Met, Lys; C�1 for His; C�(1,2) for Tyr, Phe, O�1 for Gln; O�(1,2) for Glu; N� for Arg; N�1 for Trp.
jH�(2,3) for Lys; H�(1,2,3) for Met; H� for Arg; H�1 for His, Trp; H�(1,2) for Phe, Tyr.
kC�2 for Trp, Phe, Tyr; N�2 for Gln, His.
lH�2(1,2) for Gln.
mC�2 for Trp; N� for Lys.
nH�2 for Trp; H�(1,2,3) for Lys.
oC�3 for Trp; OH for Tyr; NH(1,2) for Arg.
pH�3 for Trp; HH for Tyr; HH(1,2)(1,2) for Arg.
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and 	-sheet conformations. Thus, we consider the aforementioned
0.46 kcal/mol RMS energy difference among the selected tetra-Ala
conformers acceptable.

Comparisons of the Charges and Dipole Moments

As we indicated earlier, an important feature of Cornell et al.
charge set is that it is obtained by fitting to the electrostatic
potential calculated using the HF/6-31G* quantum mechanical
method. Because HF/6-31G* has a tendency to exaggerate the
gas-phase dipole moment, the charges are slightly larger (in abso-
lute value) than the typical gas-phase charges. In some sense, the
charges are somewhat condensed phase-like. Because our new
charge set was obtained by fitting to the condensed-phase electro-
static, it would be interesting to compare these two sets of charges.
Shown in Figure 2 is the scatterplot of the charges. One can clearly
see a good correlation between them. Indeed, the correlation
coefficient is 0.98. This indicates that the two sets of charges are
highly similar, which is expected. However, the fitted straight line
has a slope of 1.049, indicating that the Cornell et al. charge set is
systematically larger than the new charge set by approximately
5%. The difference is not uniform; the fitting error ranges from
	0.2 to 0.2 e.u., which is substantial.

Further comparisons were made to three additional charge sets
obtained by fitting directly to the quantum mechanical data, including
HF/6-31G*, B3LYP/cc-pVTZ in the gas phase, and B3LYP/cc-
pVTZ in water, represented by the COSMO model.40–43 The
results are summarized in Table 4. The gas-phase charges obtained
by fitting to the HF/6-31G* data were about 16% larger than those
obtained from B3LYP/cc-pVTZ gas-phase data, 10% larger than
the new charge set, and 5% larger than those from the B3LYP/cc-
pVTZ water data. This seems to indicate that the HF/6-31G*
charges are more polar than the COSMO charges, which is con-
trary to the conclusion based on comparisons of dipole moments
(discussed below). In comparison, the new charge set (Table 3) is
about 5% larger than the gas-phase charges obtained from B3LYP
gas-phase data and about 4% smaller than the COSMO charges.
Therefore, the new charges are close to the middle point between
the gas phase and the aqueous solution phase.

Dipole moments are important physical properties of mole-
cules. In our opinion, they are more important than the partial
charges when the formal charges of the molecules are known. In
the cases of amino acids, because all formal charges are known and
most are neutral, dipole moments become the most important
terms to account for the long-range electrostatic interactions. For
example, molecules with larger dipole moments tend to be more
hydrophilic than those of smaller dipole moments.

Interestingly, the dipole moments derived from the new charge
set are systematically (about 8%) larger than those calculated using
HF/6-31G* method, which was the basis of the Cornell et al.
charge set, even though the new charges are about 10% smaller
than the HF/6-31G* charges (Table 4). This sounds somewhat
puzzling. But further analysis indicates that, although the new
charges are smaller, they distribute differently in reflection of the
distribution of effective charges of the underlying electronic struc-
tures. Because the HF/6-31G* method exaggerates the electrostatic
potentials, the resultant charges are somewhat larger than the
gas-phase charges, as if the charges are simply scaled up in
comparison to gas-phase charges. Such an effect can partially
mimic the condensed-phase electrostatics. However, the electron
distribution is expected to be polarized in the presence of solvent
molecules. In particular, the polarization has a stronger effect on
the surface atoms than on those buried atoms. Thus, surface atoms
are more polarized than the buried atoms, and would have larger
partial charges in comparison to the gas phase. The electrostatic
potentials obtained from the condensed-phase quantum mechani-
cal calculations are higher at the short range than those in the gas
phase. This may not make much difference for small molecules,
where almost all atoms are effectively exposed. For relatively large
molecules, however, the difference can be substantial, as indicated
from this comparison. Although uniform scaling charges can
achieve the goal of increasing the dipoles, such an approach cannot
mimic the true behavior of the molecules when they are sur-
rounded by solvent particles.

Although the comparison with Cornell et al. charges suggests
that the new charge set would make the peptides less hydrophilic,
the dipole moments are comparable (shown in Fig. 3) when judged
by the slope of the trendline which is 1.01 (show in Table 4).
Interestingly, the Cornell et al. dipole moments are larger than the
HF/6-31G*; therefore, the charge set is more polar than the un-
derlying QM data. In fact, one may draw the conclusion that the
dipoles based on Cornell et al. charge set are similar to those
calculated in � � 4 medium and the new charges, given that the
slope of the fitted line is 1.01 (Table 4), even though Cornell et al.
charge set is systematically larger than the new charge set by about
5%. Thus, the distribution of the new charges is different.

In comparison to other QM methods, the dipole moments
calculated using the new charge set are comparable to those
obtained using B3LYP/ccpVTZ in � � 4 medium whose trendline
has a slope of 1.002. They are about 10% smaller than those in
water, about 13% larger than those in the gas phase, as represented
by B3LYP/ccpVTZ. The dipole moments in water, as calculated
using B3LYP/ccpVTZ with the COSMO continuum solvent

Table 4. Slopes of the Trend Lines That Best Fit the Data Shown in Figure 3.

DFT/Gas DFT/� � 4 DFT/� � 80 HF/6-31G*/Gas Cornell et al.

Dipoles 0.872 1.002 1.097 0.919 1.013
Charges 0.950 — 1.038 1.102 1.049

The slopes of trend lines of the charges are also given in the table.
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model, and � � 80, are more than 20% greater than those in the gas
phase, which is expected.

One of the obstacles of using HF/6-31G* to derive charges was
that the HF/6-31G* level of theory lacks sufficient accuracy to be
used in the torsion parameter refinement. A typical remedy was to
use the other high-level QM theory (e.g., MP2) to obtain an
accurate energy profile. A problem may arise due to the difference
in the media in which the QM calculations were done. Because the
charges are exaggerated due to HF/6-31G* electrostatic potentials,
which mimics condensed-phase electrostatics, the torsion-fitting
against the gas-phase QM data has the potential to over compen-
sate. Although, this is acceptable for small peptides when the
energies are compared to the gas-phase QM energies, the over
compensation may become a source of error that has the potential
to grow with increasing size of peptides. It could become a source
of considerable error when the force field is applied to proteins or
secondary structure fragments. Nevertheless, this was not a major
concern in the past because the majority of applications were
relatively short equilibrium simulations. Another obstacle is that
the HF/6-31G* theory lacks the ability to predict the specific effect
on the distribution of the charges when solvent and other atoms are
present. Fortunately, the development of continuum solvent mod-
els has filled the gap.

Our present approach represents a step forward in force field
development methodologies. The use of the continuum solvent
models in the quantum mechanical calculations made it possible to
represent the solvent polarization effects in the point-charge mod-
els in a systematic manner. This is an important feature, given the
disparity between the gas-phase and condensed-phase electrostatic
potentials. Thus, we would expect our parameter set to be able to
mimic the condensed phase better. Consequently, our force field
may be more suited for condensed-phase simulations by design. In
particular, we speculate that our force field may be more accurate
in modeling the side-chain and tertiary contacts, both of which are
crucial for protein folding and other applications.

Finally, it is worthwhile to mention the increased level of QM
calculation used in our development protocol. The partial charges
were obtained by fitting the electrostatic potentials of peptides
calculated using DFT quantum mechanical method and the B3LYP
functionals27–29 and the ccpVTZ basis set. This method is signif-
icantly more accurate than the typical HF/6-31G* level of theory
in other force field development. In particular, the DFT method is
significantly more accurate than the Hartree–Fock method typi-
cally used in other force fields (the latter lacks electron correla-
tion). The increased accuracy can be directly translated into more
accurate charges.

Simulation of Ace-Ala-Nme in TIP3P Water

In the past, one of the primary difficulties in developing protein
force field was the lack of detailed quantitative experimental data
to compare with. Thus, the main emphasis has been on compari-
sons with QM data, although accurate representation of solvent is
still difficult. When the requirement was to maintain the experi-
mental native protein conformations within a relatively short sim-
ulation time, this was generally considered acceptable. However,
the present requirement has raised to the level where the ability to
model both the native and nonnative protein energy surface cor-

rectly and do so in a realistic solvent environment is needed. Given
the limited accuracy of QM data and the lack of realism in solvent
representation (or protein interior) in QM calculations, it suffices
to say that QM data should be treated only as guidelines for fitting,
not the final criteria for judging the accuracy of the force field. We
are now, again, confronted with the lack of reliable and quantita-
tive data to compare our results against. One alternative approach
is to compare the simulation against data obtained from statistical
analysis of high-resolution experimental (protein) structures. Re-
cently, Hu and Hermans44 studied the energetics of small peptides
with a combination of QM/MM approaches in a realistic solvent
environment and compared the energy profiles against the PMF
data obtained from analysis of high-resolution crystal structures.45

Their comparisons clearly demonstrated that all of the present
force fields have certain degree of bias when compared to the
high-level QM/MM data. Indeed, we realize that such comparison
is still qualitative in nature, and it should be combined with other
data to evaluate the accuracy of the force field. In particular,
because dipeptides can not form intramolecular hydrogen bonds,
which are present in protein structures, the relative strength of the
main chain hydrogen bonds cannot be examined from such tests.
Nevertheless, it would be equally erroneous if we completely
dismiss such comparison.

Shown in Figure 4 is the Ramanchandran plot obtained from
simulations of Ace-Ala-Nme peptide in TIP3P water. Overall, it
closely resembles the one obtained by Lovell et al.45 The main
difference between this and the one obtained from statistical anal-
ysis of protein structures is the lack of representation in the �L

region, contrary to the conclusion drawn from the comparisons
with QM data. Interestingly, the same region was better sampled in
the Ace-Ala4-Nme penta-peptide (discussed later). A striking fea-
ture is that the balance between the extended and the helical
regions are preserved very well and the left-hand side of this
Ramanchandran plot appears to be similar to that of Lovell et al.45

This is remarkable, given the significance of the balance between
the extended and helical regions in protein structure modeling.
Thus, we anticipate that this force field would give an improved
realism in secondary structure modeling, which has so far been a
challenge to the force field development community.

Simulation of Ace-Gly-Nme in TIP3P Water

One of the curious findings in the work of Hu and Hermans44 is
that almost all present force fields match poorly to the main
features of the PMF of Ace-Gly-Nme, notwithstanding its small
size and simple structure, except for the Cornell et al. force field.
With only one hydrogen as the R group, Glycine is the most
flexible amino acid. The main features of its PMF surface, as
observed from the crystal structures (shown as contours in Fig. 5),
include unfavorable regions around � � 0° and around � �
�90°. From Figure 5, one can see that these features are clearly
well represented in the new force field. This is quite possibly the
only force field available that has achieved this level of accuracy.
Remarkably, the distribution appears to be in better agreement
with experiment than with high-level QM/MM simulations by Hu
and Hermans.44 This suggests that inclusion of higher order terms
is not the only route to achieve decent accuracy for this type of
peptides. Conversely, even with the inclusion of higher order
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terms, as far as the main-chain distribution is concerned, fine
tuning of the main-chain torsion parameters will be crucial to
achieve good balance between important conformations because of
the inevitable approximation. Given the frequent usage of Gly to
form turns in peptide design, the new parameter set will facilitate
the modeling and design of these peptides. The latter, in turn, will
help to assess the accuracy of the model.

Simulation of Ace-Ala4-Nme in TIP3P Water

The Ace-Ala4-Nme peptide is one of the smallest peptides that are
capable of forming main-chain hydrogen bonds. In this case, it can
potentially form two main-chain hydrogen bonds. Experimental
studies on Alanine-based peptides suggest that short peptides up to
seven alanine residues are unstructured in solution.46 This is ad-
vantageous for its lack of significant (free) energy traps that reduce
the sampling efficiency. In comparison, a structured peptide would
impose conformational preference, which is undesirable if we
intend to compare with the experimental data obtained from the
statistical analysis of a large number of high resolution crystal
structures. Shown in Figures 6 are the scattered and PMF contour
plots of the main-chain �–� distribution of the Ala residues. One
of the notable features of the scattered plots is the sampling of the
�L region. This is in contrast to the lack of sampling in the same
region in the Ace-Ala-Nme dipeptide simulation. In our opinion,
this can be attributed to the interactions of the side chains whose
inclusion inevitably change the overall energy surface. Thus, cal-
ibration based on small molecules could be potentially misleading.

Figure 5. Ramanchandran plot of Ace-Gly-Nme di-peptide from sim-
ulation in TIP3P water and is compared to the PMF contours obtained
from statistical analysis of high-resolution X-ray structures. Please see
refs. 44 and 45 for comparison with other force fields.

Figure 6. Ramanchandran plot of the Ace-(Ala)4–Nme penta-peptide from simulation in TIP3P water.
PMFs from statistical analysis of high-resolution X-ray structures are shown in contours (red and green).
Here, the �–� distribution obtained from the simulation is shown as both scatters (A) and contours (B).
The red dashed contours are Ala residues of from the high-resolution X-ray protein structures, and the
green dashed contours are for all residues except Gly and Pro.
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Again, the type II poly-proline helical region is clearly the most
favorable region, which should be the case for unstructured short
peptides as shown by recent experiments.47

Comparisons with the PMF contours obtained from statistical
analysis of high-resolution X-ray structures further demonstrated
that the new force field has achieved a reasonable level of accu-
racy. Here, we can clearly see that the new force field reproduced
important features of the experimental PMF contours, including a
reasonable balance between the extended 	-sheet conformation
and the helical conformation.

The difference found at the type II poly-proline helical region
is largely due to the unstructured peptide conformation; this is in
agreement with recent experiments, which have shown that the
alanine-based short peptides have the tendency to form poly-
proline type II helices.47 The ability to reproduce such a fine
feature will greatly enhance the realism in simulations.

Tests on Other Peptides and Proteins

We have conducted extensive tests to examine the accuracy of the
force field using a variety of peptide and protein systems, including
alanine-based helical peptide,48 	-sheet–forming peptides (both
	-hairpins and three-stranded 	-sheets, manuscript in preparation),
Trp-cage miniprotein,11 and a large ensemble of protein decoys.49

The details of these test results will appear elsewhere. Here, we
summarize some of the highlights.

In the alanine-based peptide, a total of 32 simulations48 were
done, and each of the simulations were run to 100 ns, using a
Generalized Born continuum solvent model.7 The calculated av-
erage helicity is in excellent agreement with experiments judged
by both main-chain hydrogen bonds and main-chain torsion an-
gles.48 In comparison to simulations on similar peptides using
other force fields, there is a noticeable difference in the relative
population of three helical species. The equilibrium populations in
the 
-helical and 310 conformations are, respectively, 4.8 and
1.3%, as measured by the main-chain hydrogen bonds. Both are
substantially lower than those in simulations using the CHARMM
force field50,51 (7% for 
-helices and 6.5% for 310-helices). Feig et
al. recently studied the three helical species and found that the
overrepresentation of the 
-helices in the CHARMM force field
was likely a force field artifact.52 The 310-helical conformation is
also much less populated in comparison to simulations53 using the
Cornell et al. force field. In fact, based on our simulations,48 we
believe that both 
-helix and 310-helix are transient species formed
by thermal fluctuations from the �-helical conformation as judged
by the observation that 61% of the 
-helix and 310-helix species
form bifurcated hydrogen bonds. This agrees with a recent study
by Armen et al., who compared their simulation results with NMR
experimental data.54 We also observed that two-turn short helices
tend to be unstable, which agreed with the experimental observa-
tion that seven-amino acid peptides cannot form stable helices.46,47

In the 	-sheet peptides, simulations (manuscript in preparation)
were done on four 	-hairpin peptides using a Generalized Born
solvent model.7 About 20 simulations were conducted for each pep-
tide, and the number of trajectories that have reached the 	-hairpin
conformation ranged from 4 to 13. The extrapolated folding times,
based on two-state assumption, ranged from 210 to 440 ns, which are
reasonable given that the continuum solvent models accelerate the

process by neglecting solvent viscosity. We also successfully folded a
three-stranded 	-sheet peptide using the same simulation method.

In the case of the Trp-cage miniprotein, a simulation was
conducted to 100 ns using a Generalize Born solvent model.11 The
Trp-cage was able to adopt its native structure with the main-chain
RMSD of 1.0 Å and heavy-atom RMSD of 2.0 Å from the native
NMR structure within 30 ns, and remained in that state until the
end of the simulation. In comparison, the heavy-atom RMSDs of
the 38 NMR structures range from 1.6 to 2.8 Å. Thus, the simu-
lated structure clearly approached the accuracy of the NMR data.
When compared to the simulations using Cornell et al. charge set
with a set of tuned main-chain torsion parameters (tuned against a
large pool of misfolded peptides8) and using an OPLS-AA force
field,10 the simulation using our new parameter set stood out as the
best result observed so far. In the work of Simmerling et al.,8 the
simulation successfully folded the Trp-cage protein to a main-
chain RMSD between 1.0 to 2.0 Å. In the work of Snow et al.,10

they studied the folding rates of Trp-cage by approximately 7000
simulations, with the durations ranged from 1.0 to 80.0 ns. Among
these massive number of trajectories, only one trajectory reached
main-chain RMSD of 1.4 Å with nonnative packing of the Trp side
chain (the Trp is flipped by about 90° compare to NMR structure).
Incidentally, Generalized Born solvent models were used in all
three simulations. Thus, the differences in these simulations are
more likely due to the underlying force fields used in the simula-
tions, although details of how the solvent models were imple-
mented may also play a role. In our simulation, it is noteworthy
that the Trp side chain was snuggly packed into the cage and
remained in that conformation for about 70% of the time.

Further tests were done on a large set of protein decoys.49 In
these tests, a Generalized Born solvent model similar to other
studies was used.7 However, unlike in other similar tests con-
ducted using other force fields55,56 where the native and decoys
were only subjected to energy minimization, we conducted short
(10-ps) molecular dynamics simulations on the decoys and used
the average energy obtained from the simulations to calculate the
Z-scores, a measure of the discriminatory ability of the approach.
The details of this study have been reported elsewhere. We present
here a brief comparison with other similar studies using other force
fields55,56 in Table 5. Clearly, the new approach, the combination
of improved protocol (molecular dynamics vs. energy minimiza-
tion), and the new force field, have significantly improved upon the
reported results. In particular, our average Z-scores were about 1.0
better than those published by others, which means that our ap-
proach has a better discriminatory ability than the previously
published results by more than one standard deviation of the
energy distribution. Such an enhanced ability is also reflected in
the improved fidelity of finding the correct protein structures from
the large pool of decoys. Thus, judging from the improved Z-
scores and the improved ability to differentiate the decoys from the
native protein structures, we concluded that this new force field
performed better than the other two existing force fields.

Discussion

In molecular mechanics models, torsion potentials serve the role to
account for those higher order terms that are otherwise not present
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explicitly in the model. Historically, this has been the most
difficult part of the force field development, and will perhaps
remain so in the foreseeable future. In particular, the main-
chain torsion potentials must reach an extremely high level of
accuracy if the force field is intended to model poly-peptide.
One of the most crucial issues in achieving this high accuracy
is the balance between the helical and the extended conforma-
tions. For example, a small bias of 0.1 kcal/mol per residue
towards one way or the other would grow to 1.0 kcal/mol when
the force field is applied to model a small 10-residue peptide.
Obviously, such a level of accuracy is yet unattainable with the
present technology, and will perhaps remain a rather challeng-
ing task for some time. The problem is further compounded
with the requirement of accurate condensed-phase QM data.
This is likely true even for a fully polarizable force field
because of the truncation of higher order terms. Thus, compar-
ison with QM data is just one of many steps needed to achieve
a well-balanced force field.

Traditionally, comparisons with either experimental or high-
level quantum mechanical energies of small molecules were taken
as important tests for force fields. Such an approach is clearly

valuable, and can provide quantitative assessment on the accuracy
of the force fields in the confined application areas of those
respective small molecular systems. Because our objective is to
develop a force field for the simulations of proteins, it is more
relevant to test the force field against experimentally well-charac-
terized peptide systems. Our test results clearly showed that the
new force field has achieved a reasonable balance in helical and
extended conformations. Obviously, more tests have to be done to
more fully characterize its behavior and its ability to model pro-
teins. One crucial test would be in the area of tertiary and side-
chain contacts. As we stated before, because the charges were
derived in condensed phase and may mimic the polarization effect,
we are optimistic that the force field will give reasonable perfor-
mance in this area as well.

A typical approach in the torsion parameter development in the
past was to fit the torsion parameters against a few important
energy points calculated at relatively high-level quantum mechan-
ical theory (often in gas phase). In our present work, the main-
chain torsion parameters were obtained by fitting to a 2D (�–�)
144-point energy grid (12 
 12) of alanine-dipeptide calculated
using MP2/cc-pVTZ//HF/6-31G** quantum mechanical methods

Table 5. Comparison with Other Studies Based on CHARMM 19 and OPLS-AA Force Fields on
Protein Decoy Sets.

Decoy Sets CHARMM/GB56 OPLS-AA/GB55 AMBER/GB-MD

Four-state Reduceda

% Accuracy 
100% 43% 100%
Average Znative 	3.39 	3.67 	4.95
Average Z� n/a n/a 	1.79
Range of Znative 	1.7 to 	4.6 	2.18 to 	4.53 	2.86 to 	6.33

LMDSb

% Accuracy n/a 14% 80%
Average Znative n/a 	2.57 	4.49
Average Z� n/a n/a 	3.18
Range of Znative n/a 0.6 to 	14.57 4.99 to 	8.26

Lu and Skolnickc

% Accuracy n/a n/a 93%
Average Znative n/a 	4.02 	5.82
Average Z� n/a n/a 	3.25
Range of Znative n/a 	1.48 to 	9.6 0.34 to 	11.63

The “AMBER/GB-MD” column is the data obtained using the new AMBER force field described in
this article.
a,bBoth the “four-state reduced” and the local minima decoy sets (LMDS) were obtained from the
Decoys ‘R’ Us database.61

cThe “Lu and Skolnick” decoy set (courtesy of Lu and Skolnick) contains 54 unique protein
sequences, 28 of which has NMR determined structures, and 26 of which has X-ray structures with
resolutions ranging from 2.5 to 1.2 Å. The decoys in this set were generated on a lattice using an ab
initio Monte Carlo structure prediction program,62,63 and each of these sequences has 1333 decoy
structures. “% Accuracy” specifies the percentage of proteins having the lowest energies in compar-
ison to the decoys. “Average Znative” is the average Z-score of the native structure and is calculated
as Znative � (Enative 	 �E�all)/�, where Enative is the average energy obtained from the MD simulation
on the native structure and �E�all is that averaged over all structures, including decoys; � is the
standard deviation of the average energies. “Average Z�” is the average Z-score of the native structure
in comparison to the decoy of the lowest energy. It is calculated as Z� � (Enative 	 Edecoy)/�, where
Edecoy is the average energy of the decoy that has the lowest energy among the decoys. The
“CHARMM/GB” data were taken from Dominy and Brooks,56 and the “OPLS-AA/GB” data were
from Felts et al.55
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in organic solvent (� � 4.0). This is similar to the approach used
in the recent refinement of OPLS-AA force field parameters by
Kaminski et al.38 In their approach, the torsion parameters, includ-
ing those of the side chains, were fitted against gas-phase QM
energies. However, the charge set in OPLS-AA force field57 was
tuned against condensed-phase experimental data. As we sug-
gested earlier, such a fitting procedure can be a source of possible
overcompensation. The differences in the energy profiles due to
environment are also of concern.

In our approach, because the same solvent environment was
applied to derive charges and to fit the torsion parameters,
overcompensation should be less of a problem. It also ensures
that the energetic surface represents the condensed phase. The
elaborate map of the entire 2D �–� energy surface makes it
possible to fit the torsion potentials rationally and ensures that
the resulting molecular mechanic energy surface represent the
QM surface.

The choice of � � 4.0 in organic solvent, instead of � � 78.4
in water, reflects our intention to mimic protein interior. Studies
have indicated that the dielectric constant of protein interior is
in the neighborhood of � � 10 –12.58,59 However, measure-
ments on dry protein powder indicated that the dielectric con-
stant, in the absence of buried water (exactly the kind of
environment that our model intends to mimic), is between � �
2 and � � 4.60 Thus, the elevated dielectric constant (� �
10 –12 from � � 4.0) is largely attributed to the presence of
water molecules and perhaps also the dynamics of proteins in
solution.58,59 Because this set of parameters are designed for
solution phase simulations, solvent effect will be treated either
by explicit water or continuum solvent models, which will take
into account the dielectric effect of water. Thus, the choice of
� � 4.0 is appropriate. Furthermore, our conservative choice of
� � 4.0 is intended to avoid over polarization. This is impor-
tant, because overpolarization would exaggerate the charges
further and the resulting peptide models would be too hydro-
philic. Even though studies have indicated that the IEFPCM
model has reached a respectable level of accuracy, it is never-
theless an empirical model. Thus, the choice of � � 4.0, instead
of � � 10, would, hopefully, give us an additional margin. It is
also recognized that the solvent effect, in the absence of explicit
solvent molecules, accounts for the free energy difference in
respect to the gas phase. The latter is proportional to (1 	 1/�).
The solvent polarization effect is to minimize this term. One,
therefore, intuitively expects that such an effect would also be
proportional to (1 	 1/�). As a consequence, a medium of � �
4.0 would produce approximately 75% of polarization effect of
a perfect conductor (� � �) when other factors are equal.

The overall agreement between the dipole moments of the new
charge set and those of Cornell et al. charges suggests that they are
compatible. This implies that the new charge set can be applied
directly to study ligand binding with the existing ligand charges,
although improvement is likely if these charges can be rederived
within the framework of the new charge set. This “backward
compatibility” is beneficial, given the significant investment re-
quired in the parameterization of organic molecules. It allows a
smooth transition to the new frame work.

Conclusion

We presented a novel approach to derive a point-charge model for
simulations of proteins in the condensed phase. The charges were
based on high-level quantum mechanical electrostatic potentials
calculated using continuum solvent model with � � 4.0. The
main-chain torsion parameters of peptides were obtained by fitting
to the MP2/cc-pVTZ//HF/6-31G** energy profiles of Alanine and
Glycine di-peptides, which were also calculated in � � 4.0 organic
solvent to ensure a balanced parameter set. Our initial test results
were encouraging, and clearly showed excellent balance between
the extended and helical regions.

Acknowledgment

Computer time was provided by Pittsburgh Supercomputer Center.
Helpful suggestions by the reviewers are gratefully acknowledged.

References

1. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T. A.; Lee, H.;
Pedersen, L. G. J Chem Phys 1995, 103, 8577.

2. Simmerling, C. L.; Elber, R. Proc Natl Acad Sci USA 1995, 92, 3190.
3. Simmerling, C.; Miller, J. L.; Kollman, P. A. J Am Chem Soc 1998,

120, 7149.
4. Duan, Y.; Kollman, P. A. Science 1998, 282, 740.
5. Crowley, M. F.; Darden, T. A.; Cheatham, T. E.; Deerfield, D. W. J

Supercomp 1997, 11, 255.
6. Bashford, D.; Case, D. A. Annu Rev Phys Chem 2000, 51, 129.
7. Tsui, V.; Case, D. A. J Am Chem Soc 2000, 122, 2489.
8. Simmerling, C.; Strockbine, B.; Roitberg, A. E. J Am Chem Soc 2002,

124, 11258.
9. Snow, C. D.; Nguyen, N.; Pande, V. S.; Gruebele, M. Nature 2002,

420, 102.
10. Snow, C. D.; Zagrovic, B.; Pande, V. S. J Am Chem Soc 2002, 124,

14548.
11. Chowdhury, S.; Lee, M. C.; Xiong, G.; Duan, Y. J Mol Biol 2003, 327,

711.
12. Shakhnovich, E. I. Curr Opin Struct Biol 1997, 7, 29.
13. Sheinerman, F. B.; Brooks, C. L. Proc Natl Acad Sci USA 1998, 95,

1562.
14. Duan, Y.; Wang, L.; Kollman, P. A. Proc Natl Acad Sci USA 1998,

95, 9897.
15. Voter, A. F. Phys Rev B 1998, 57, 985.
16. Zagrovic, B.; Sorin, E. J.; Pande, V. S. J Mol Biol 2001, 313, 151.
17. Weiner, S. J.; Kollman, P. A.; Nguyen, D. T.; Case, D. A. J Comp

Chem 1986, 7, 230.
18. Bash, P. A.; Singh, U. C.; Langridge, R.; Kollman, P. A. Science 1987,

236, 564.
19. Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.;

Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Koll-
man, P. A. J Am Chem Soc 1995, 117, 5179.

20. Cheatham, T. E., III; Kollman, P. A. J Mol Biol 1996, 259, 434.
21. Duan, Y.; Patricia, W.; Crowley, M.; Rosenberg, J. M. J Mol Biol

1997, 272, 553.
22. Cieplak, P.; Caldwell, J.; Kollman, P. A., personal communication.
23. Kaminski, G. A.; Stern, H. A.; Berne, B. J.; Friesner, R. A.; Cao,

Y. X. X.; Murphy, R. B.; Zhou, R. H.; Halgren, T. A. J Comp Chem
2002, 23, 1515.

AMBER Force Field 2011



24. Wang, J. M.; Kollman, P. A. J Comp Chem 2001, 22, 1219.
25. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J Phys Chem

1993, 97, 10269.
26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,

M. A.; J. R. Cheeseman, V. G. Z.; J. A. Montgomery, J.; Stratmann,
R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.;
Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Salvador, P.; Dannenberg, J. J.; Malick, D. K.; Rabuck, A. D.; Ragha-
vachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul,
A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi,
I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.;
Head–Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gauss-
ian, Inc.: Pittsburgh, PA, 2001.

27. Lee, C.; Yang, W.; Parr, R. G. Phys Rev B 1988, 37, 785.
28. Becke, A. D. J Chem Phys 1993, 98, 5648.
29. Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem Phys Lett 1989,

157, 200.
30. Kendall, R. A.; Dunning, T. H.; Harrison, R. J. J Chem Phys 1992, 96,

6796.
31. Tomasi, J.; Mennucci, B.; Cances, E. Theochem-J Mol Struct 1999,

464, 211.
32. Pomelli, C. S.; Tomasi, J.; Barone, V. Theor Chem Acc 2001, 105,

446.
33. Cances, E.; Mennucci, B.; Tomasi, J. J Chem Phys 1997, 107, 3032.
34. Kollman, P. A.; Dixon, R. W.; Cornell, W. D.; Fox, T.; Chipot, C.;

Pohorille, A. In Computer Simulations of Biological Systems; van
Gunsteren, W. F., Ed.; Escom: The Netherlands, 1997.

35. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.;
Klein, M. L. J Chem Phys 1983, 79, 926.

36. Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola,
A.; Haak, J. R. J Comp Phys 1984, 81, 3684.

37. Wang, G.; Dunbrack, R. L. J., Bioinformatics, 2003, 9, 1589.
38. Kaminski, G. A.; Friesner, R. A.; Tirado–Rives, J.; Jorgensen, W. L.

J Phys Chem B 2001, 105, 6474.

39. Beachy, M. D.; Chasman, D.; Murphy, R. B.; Halgren, T. A.; Friesner,
R. A. J Am Chem Soc 1997, 119, 5908.

40. Klamt, A.; Schuurmann, G. J Chem Soc Perkin Trans 1993, 2, 799.
41. Klamt, A. J Phys Chem 1995, 99, 2224.
42. Andzelm, J.; Kolmel, C.; Klamt, A. J Chem Phys 1995, 103, 9312.
43. Klamt, A.; Jonas, V. J Chem Phys 1996, 105, 9972.
44. Hu, H.; Hermans, J. Proteins 2003, 50, 451.
45. Lovell, S. C.; Davis, I. W.; Arendall, W. B. III; de Bakker, P. I. W.;

Word, J. M.; Prisant, M. G.; Richardson, J. S.; Richardson, D. C.
Proteins 2003, 50, 437.

46. Rohl, C. A.; Baldwin, R. L. Biochemistry 1997, 36, 8435.
47. Shi, Z. S.; Olson, C. A.; Rose, G. D.; Baldwin, R. L.; Kallenbach,

N. R. Proc Natl Acad Sci USA 2002, 99, 9190.
48. Chowdhury, S.; Zhang, W.; Wu, C.; Xiong, G.; Duan, Y. Biopolymers

2003, 68, 63.
49. Lee, M. C.; Duan, Y. Proteins 2003, in press.
50. Ferrara, P.; Apostolakis, J.; Caflisch, A. J Phys Chem B 2000, 104,

5000.
51. Shirley, W. A.; Brooks, C. L., III. Proteins 1997, 28, 59.
52. Feig, M.; MacKerell, A. D.; Brooks, C. L. J Phys Chem B 2003, 107,

2831.
53. Sung, S. S.; Wu, X. W. Proteins 1996, 25, 202.
54. Armen, R.; Alonso, D. O. V.; Daggett, V. Protein Sci 2003, 12, 1145.
55. Felts, A. K.; Gallicchio, E.; Wallqvist, A.; Levy, R. M. Proteins 2002,

48, 404.
56. Dominy, B. N.; Brooks, C. L. J Comp Chem 2002, 23, 147.
57. Jorgensen, W. L.; Maxwell, D. S.; Tirado–Rives, J. J Am Chem Soc

1996, 118, 11225.
58. GarciaMoreno, B.; Dwyer, J. J.; Gittis, A. G.; Lattman, E. E.; Spencer,

D. S.; Stites, W. E. Biophys Chem 1997, 64, 211.
59. Dwyer, J. J.; Gittis, A. G.; Karp, D. A.; Lattman, E. E.; Spencer, D. S.;

Stites, W. E.; Garcia–Moreno, B. Biophys J 2000, 79, 1610.
60. Harvey, S. C.; Hoekstra, P. J Phys Chem 1972, 76, 2987.
61. Park, B.; Levitt, M. J Mol Biol 1996, 258, 367.
62. Kihara, D.; Lu, H.; Kolinski, A.; Skolnick, J. Proc Natl Acad Sci USA

2001, 98, 10125.
63. Lu, H.; Skolnick, J. Proteins 2001, 44, 223.

2012 Duan et al. • Vol. 24, No. 16 • Journal of Computational Chemistry


